3.34 \(\int \frac{x^3 (d+e x)^2}{\sqrt{d^2-e^2 x^2}} \, dx\)

Optimal. Leaf size=144 \[ -\frac{3 d^3 (8 d+5 e x) \sqrt{d^2-e^2 x^2}}{20 e^4}-\frac{3 d^2 x^2 \sqrt{d^2-e^2 x^2}}{5 e^2}-\frac{d x^3 \sqrt{d^2-e^2 x^2}}{2 e}-\frac{1}{5} x^4 \sqrt{d^2-e^2 x^2}+\frac{3 d^5 \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{4 e^4} \]

[Out]

(-3*d^2*x^2*Sqrt[d^2 - e^2*x^2])/(5*e^2) - (d*x^3*Sqrt[d^2 - e^2*x^2])/(2*e) - (x^4*Sqrt[d^2 - e^2*x^2])/5 - (
3*d^3*(8*d + 5*e*x)*Sqrt[d^2 - e^2*x^2])/(20*e^4) + (3*d^5*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/(4*e^4)

________________________________________________________________________________________

Rubi [A]  time = 0.186042, antiderivative size = 144, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {1809, 833, 780, 217, 203} \[ -\frac{3 d^3 (8 d+5 e x) \sqrt{d^2-e^2 x^2}}{20 e^4}-\frac{3 d^2 x^2 \sqrt{d^2-e^2 x^2}}{5 e^2}-\frac{d x^3 \sqrt{d^2-e^2 x^2}}{2 e}-\frac{1}{5} x^4 \sqrt{d^2-e^2 x^2}+\frac{3 d^5 \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{4 e^4} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*(d + e*x)^2)/Sqrt[d^2 - e^2*x^2],x]

[Out]

(-3*d^2*x^2*Sqrt[d^2 - e^2*x^2])/(5*e^2) - (d*x^3*Sqrt[d^2 - e^2*x^2])/(2*e) - (x^4*Sqrt[d^2 - e^2*x^2])/5 - (
3*d^3*(8*d + 5*e*x)*Sqrt[d^2 - e^2*x^2])/(20*e^4) + (3*d^5*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/(4*e^4)

Rule 1809

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff[Pq, x,
 Expon[Pq, x]]}, Simp[(f*(c*x)^(m + q - 1)*(a + b*x^2)^(p + 1))/(b*c^(q - 1)*(m + q + 2*p + 1)), x] + Dist[1/(
b*(m + q + 2*p + 1)), Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[b*(m + q + 2*p + 1)*Pq - b*f*(m + q + 2*p + 1)*x^q
 - a*f*(m + q - 1)*x^(q - 2), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x]
 && PolyQ[Pq, x] && ( !IGtQ[m, 0] || IGtQ[p + 1/2, -1])

Rule 833

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(g*(d + e*x)
^m*(a + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^p*
Simp[c*d*f*(m + 2*p + 2) - a*e*g*m + c*(e*f*(m + 2*p + 2) + d*g*m)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, p
}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p]) &&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 780

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(((e*f + d*g)*(2*p
 + 3) + 2*e*g*(p + 1)*x)*(a + c*x^2)^(p + 1))/(2*c*(p + 1)*(2*p + 3)), x] - Dist[(a*e*g - c*d*f*(2*p + 3))/(c*
(2*p + 3)), Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, p}, x] &&  !LeQ[p, -1]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^3 (d+e x)^2}{\sqrt{d^2-e^2 x^2}} \, dx &=-\frac{1}{5} x^4 \sqrt{d^2-e^2 x^2}-\frac{\int \frac{x^3 \left (-9 d^2 e^2-10 d e^3 x\right )}{\sqrt{d^2-e^2 x^2}} \, dx}{5 e^2}\\ &=-\frac{d x^3 \sqrt{d^2-e^2 x^2}}{2 e}-\frac{1}{5} x^4 \sqrt{d^2-e^2 x^2}+\frac{\int \frac{x^2 \left (30 d^3 e^3+36 d^2 e^4 x\right )}{\sqrt{d^2-e^2 x^2}} \, dx}{20 e^4}\\ &=-\frac{3 d^2 x^2 \sqrt{d^2-e^2 x^2}}{5 e^2}-\frac{d x^3 \sqrt{d^2-e^2 x^2}}{2 e}-\frac{1}{5} x^4 \sqrt{d^2-e^2 x^2}-\frac{\int \frac{x \left (-72 d^4 e^4-90 d^3 e^5 x\right )}{\sqrt{d^2-e^2 x^2}} \, dx}{60 e^6}\\ &=-\frac{3 d^2 x^2 \sqrt{d^2-e^2 x^2}}{5 e^2}-\frac{d x^3 \sqrt{d^2-e^2 x^2}}{2 e}-\frac{1}{5} x^4 \sqrt{d^2-e^2 x^2}-\frac{3 d^3 (8 d+5 e x) \sqrt{d^2-e^2 x^2}}{20 e^4}+\frac{\left (3 d^5\right ) \int \frac{1}{\sqrt{d^2-e^2 x^2}} \, dx}{4 e^3}\\ &=-\frac{3 d^2 x^2 \sqrt{d^2-e^2 x^2}}{5 e^2}-\frac{d x^3 \sqrt{d^2-e^2 x^2}}{2 e}-\frac{1}{5} x^4 \sqrt{d^2-e^2 x^2}-\frac{3 d^3 (8 d+5 e x) \sqrt{d^2-e^2 x^2}}{20 e^4}+\frac{\left (3 d^5\right ) \operatorname{Subst}\left (\int \frac{1}{1+e^2 x^2} \, dx,x,\frac{x}{\sqrt{d^2-e^2 x^2}}\right )}{4 e^3}\\ &=-\frac{3 d^2 x^2 \sqrt{d^2-e^2 x^2}}{5 e^2}-\frac{d x^3 \sqrt{d^2-e^2 x^2}}{2 e}-\frac{1}{5} x^4 \sqrt{d^2-e^2 x^2}-\frac{3 d^3 (8 d+5 e x) \sqrt{d^2-e^2 x^2}}{20 e^4}+\frac{3 d^5 \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{4 e^4}\\ \end{align*}

Mathematica [A]  time = 0.0963739, size = 92, normalized size = 0.64 \[ \frac{15 d^5 \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )-\sqrt{d^2-e^2 x^2} \left (12 d^2 e^2 x^2+15 d^3 e x+24 d^4+10 d e^3 x^3+4 e^4 x^4\right )}{20 e^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(d + e*x)^2)/Sqrt[d^2 - e^2*x^2],x]

[Out]

(-(Sqrt[d^2 - e^2*x^2]*(24*d^4 + 15*d^3*e*x + 12*d^2*e^2*x^2 + 10*d*e^3*x^3 + 4*e^4*x^4)) + 15*d^5*ArcTan[(e*x
)/Sqrt[d^2 - e^2*x^2]])/(20*e^4)

________________________________________________________________________________________

Maple [A]  time = 0.061, size = 149, normalized size = 1. \begin{align*} -{\frac{{x}^{4}}{5}\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}-{\frac{3\,{d}^{2}{x}^{2}}{5\,{e}^{2}}\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}-{\frac{6\,{d}^{4}}{5\,{e}^{4}}\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}-{\frac{d{x}^{3}}{2\,e}\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}-{\frac{3\,{d}^{3}x}{4\,{e}^{3}}\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}+{\frac{3\,{d}^{5}}{4\,{e}^{3}}\arctan \left ({x\sqrt{{e}^{2}}{\frac{1}{\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}}} \right ){\frac{1}{\sqrt{{e}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(e*x+d)^2/(-e^2*x^2+d^2)^(1/2),x)

[Out]

-1/5*x^4*(-e^2*x^2+d^2)^(1/2)-3/5*d^2*x^2*(-e^2*x^2+d^2)^(1/2)/e^2-6/5*d^4*(-e^2*x^2+d^2)^(1/2)/e^4-1/2*d*x^3*
(-e^2*x^2+d^2)^(1/2)/e-3/4*d^3*x*(-e^2*x^2+d^2)^(1/2)/e^3+3/4*d^5/e^3/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x
^2+d^2)^(1/2))

________________________________________________________________________________________

Maxima [A]  time = 1.4709, size = 190, normalized size = 1.32 \begin{align*} -\frac{1}{5} \, \sqrt{-e^{2} x^{2} + d^{2}} x^{4} - \frac{\sqrt{-e^{2} x^{2} + d^{2}} d x^{3}}{2 \, e} - \frac{3 \, \sqrt{-e^{2} x^{2} + d^{2}} d^{2} x^{2}}{5 \, e^{2}} + \frac{3 \, d^{5} \arcsin \left (\frac{e^{2} x}{\sqrt{d^{2} e^{2}}}\right )}{4 \, \sqrt{e^{2}} e^{3}} - \frac{3 \, \sqrt{-e^{2} x^{2} + d^{2}} d^{3} x}{4 \, e^{3}} - \frac{6 \, \sqrt{-e^{2} x^{2} + d^{2}} d^{4}}{5 \, e^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)^2/(-e^2*x^2+d^2)^(1/2),x, algorithm="maxima")

[Out]

-1/5*sqrt(-e^2*x^2 + d^2)*x^4 - 1/2*sqrt(-e^2*x^2 + d^2)*d*x^3/e - 3/5*sqrt(-e^2*x^2 + d^2)*d^2*x^2/e^2 + 3/4*
d^5*arcsin(e^2*x/sqrt(d^2*e^2))/(sqrt(e^2)*e^3) - 3/4*sqrt(-e^2*x^2 + d^2)*d^3*x/e^3 - 6/5*sqrt(-e^2*x^2 + d^2
)*d^4/e^4

________________________________________________________________________________________

Fricas [A]  time = 1.7826, size = 204, normalized size = 1.42 \begin{align*} -\frac{30 \, d^{5} \arctan \left (-\frac{d - \sqrt{-e^{2} x^{2} + d^{2}}}{e x}\right ) +{\left (4 \, e^{4} x^{4} + 10 \, d e^{3} x^{3} + 12 \, d^{2} e^{2} x^{2} + 15 \, d^{3} e x + 24 \, d^{4}\right )} \sqrt{-e^{2} x^{2} + d^{2}}}{20 \, e^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)^2/(-e^2*x^2+d^2)^(1/2),x, algorithm="fricas")

[Out]

-1/20*(30*d^5*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) + (4*e^4*x^4 + 10*d*e^3*x^3 + 12*d^2*e^2*x^2 + 15*d^3*
e*x + 24*d^4)*sqrt(-e^2*x^2 + d^2))/e^4

________________________________________________________________________________________

Sympy [A]  time = 7.01119, size = 359, normalized size = 2.49 \begin{align*} d^{2} \left (\begin{cases} - \frac{2 d^{2} \sqrt{d^{2} - e^{2} x^{2}}}{3 e^{4}} - \frac{x^{2} \sqrt{d^{2} - e^{2} x^{2}}}{3 e^{2}} & \text{for}\: e \neq 0 \\\frac{x^{4}}{4 \sqrt{d^{2}}} & \text{otherwise} \end{cases}\right ) + 2 d e \left (\begin{cases} - \frac{3 i d^{4} \operatorname{acosh}{\left (\frac{e x}{d} \right )}}{8 e^{5}} + \frac{3 i d^{3} x}{8 e^{4} \sqrt{-1 + \frac{e^{2} x^{2}}{d^{2}}}} - \frac{i d x^{3}}{8 e^{2} \sqrt{-1 + \frac{e^{2} x^{2}}{d^{2}}}} - \frac{i x^{5}}{4 d \sqrt{-1 + \frac{e^{2} x^{2}}{d^{2}}}} & \text{for}\: \frac{\left |{e^{2} x^{2}}\right |}{\left |{d^{2}}\right |} > 1 \\\frac{3 d^{4} \operatorname{asin}{\left (\frac{e x}{d} \right )}}{8 e^{5}} - \frac{3 d^{3} x}{8 e^{4} \sqrt{1 - \frac{e^{2} x^{2}}{d^{2}}}} + \frac{d x^{3}}{8 e^{2} \sqrt{1 - \frac{e^{2} x^{2}}{d^{2}}}} + \frac{x^{5}}{4 d \sqrt{1 - \frac{e^{2} x^{2}}{d^{2}}}} & \text{otherwise} \end{cases}\right ) + e^{2} \left (\begin{cases} - \frac{8 d^{4} \sqrt{d^{2} - e^{2} x^{2}}}{15 e^{6}} - \frac{4 d^{2} x^{2} \sqrt{d^{2} - e^{2} x^{2}}}{15 e^{4}} - \frac{x^{4} \sqrt{d^{2} - e^{2} x^{2}}}{5 e^{2}} & \text{for}\: e \neq 0 \\\frac{x^{6}}{6 \sqrt{d^{2}}} & \text{otherwise} \end{cases}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(e*x+d)**2/(-e**2*x**2+d**2)**(1/2),x)

[Out]

d**2*Piecewise((-2*d**2*sqrt(d**2 - e**2*x**2)/(3*e**4) - x**2*sqrt(d**2 - e**2*x**2)/(3*e**2), Ne(e, 0)), (x*
*4/(4*sqrt(d**2)), True)) + 2*d*e*Piecewise((-3*I*d**4*acosh(e*x/d)/(8*e**5) + 3*I*d**3*x/(8*e**4*sqrt(-1 + e*
*2*x**2/d**2)) - I*d*x**3/(8*e**2*sqrt(-1 + e**2*x**2/d**2)) - I*x**5/(4*d*sqrt(-1 + e**2*x**2/d**2)), Abs(e**
2*x**2)/Abs(d**2) > 1), (3*d**4*asin(e*x/d)/(8*e**5) - 3*d**3*x/(8*e**4*sqrt(1 - e**2*x**2/d**2)) + d*x**3/(8*
e**2*sqrt(1 - e**2*x**2/d**2)) + x**5/(4*d*sqrt(1 - e**2*x**2/d**2)), True)) + e**2*Piecewise((-8*d**4*sqrt(d*
*2 - e**2*x**2)/(15*e**6) - 4*d**2*x**2*sqrt(d**2 - e**2*x**2)/(15*e**4) - x**4*sqrt(d**2 - e**2*x**2)/(5*e**2
), Ne(e, 0)), (x**6/(6*sqrt(d**2)), True))

________________________________________________________________________________________

Giac [A]  time = 1.13264, size = 99, normalized size = 0.69 \begin{align*} \frac{3}{4} \, d^{5} \arcsin \left (\frac{x e}{d}\right ) e^{\left (-4\right )} \mathrm{sgn}\left (d\right ) - \frac{1}{20} \,{\left (24 \, d^{4} e^{\left (-4\right )} +{\left (15 \, d^{3} e^{\left (-3\right )} + 2 \,{\left (6 \, d^{2} e^{\left (-2\right )} +{\left (5 \, d e^{\left (-1\right )} + 2 \, x\right )} x\right )} x\right )} x\right )} \sqrt{-x^{2} e^{2} + d^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)^2/(-e^2*x^2+d^2)^(1/2),x, algorithm="giac")

[Out]

3/4*d^5*arcsin(x*e/d)*e^(-4)*sgn(d) - 1/20*(24*d^4*e^(-4) + (15*d^3*e^(-3) + 2*(6*d^2*e^(-2) + (5*d*e^(-1) + 2
*x)*x)*x)*x)*sqrt(-x^2*e^2 + d^2)